Affiliation:
1. Department of Robotics Division of Mechanical Engineering Tohoku University 6‐6‐01 Aoba, Aramakiaza, Aobaku Sendaishi Miyagi 980‐8579 Japan
Abstract
AbstractCholine lactate, an ionic liquid composed of bioderived materials, offers an opportunity to develop biodegradable electrochemical devices. Although ionic liquids possess large potential windows, high conductivity, and are nonvolatile, they do not exhibit electrochemical characteristics such as intercalation pseudocapacitance, redox pseudocapacitance, and electrochromism. Herein, bioderived ionic liquids are developed, including metal ions, Li, Na, and Ca, to yield ionic liquid with electrochemical behavior. Differential scanning calorimetry results reveal that the ionic liquids remained in liquid state from 230.42 to 373.15 K. The conductivities of the ionic liquids with metal are lower than those of the pristine ionic liquid, whereas the capacitance change negligibly. A protocol of the Organization for Economic Co‐operation and Development 301C modified MITI test (I) confirms that the pristine ionic liquid and ionic liquids with metal are readily biodegradable. Additionally, an ionic gel comprising the ionic liquid and poly(vinyl alcohol) is biodegradable. An electrochromic device is developed using an ionic liquid containing Li ions. The device successfully changes color at −2.5 V, demonstrating the intercalation of Li ions into the WO3 crystal. The results suggest that the electrochemically active ionic liquids have potential for the development of environmentally benign devices, sustainable electronics, and bioresorbable/implantable devices.
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献