Enhancing ROS‐Inducing Nanozyme through Intraparticle Electron Transport

Author:

Yi Zhongchao1,Yang Xiaoyue1ORCID,Liang Ying2,Chapelin Fanny3,Tong Sheng1ORCID

Affiliation:

1. F. Joseph Halcomb III, M.D. Department of Biomedical Engineering University of Kentucky Lexington KY 40536 USA

2. New York Blood Center New York NY 10065 USA

3. Shu Chien – Gene Lay Department of Bioengineering & Department of Radiology University of California San Diego La Jolla CA 92093 USA

Abstract

AbstractIron oxide nanoparticles (IONPs) have garnered significant attention as a promising platform for reactive oxygen species (ROS)‐dependent disease treatment, owing to their remarkable biocompatibility and Fenton catalytic activity. However, the low catalytic activity of IONPs is a major hurdle in their clinical translation. To overcome this challenge, IONPs of different compositions are examined for their Fenton reaction under pharmacologically relevant conditions. The results show that wüstite (FeO) nanoparticles exhibit higher catalytic activity than magnetite (Fe3O4) or maghemite (γ‐Fe2O3) of matched size and coating, despite having a similar surface oxidation state. Further analyses suggest that the high catalytic activity of wüstite nanoparticles can be attributed to the presence of internal low‐valence iron (Fe0 and Fe2+), which accelerates the recycling of surface Fe3+ to Fe2+ through intraparticle electron transport. Additionally, ultrasmall wüstite nanoparticles are generated by tuning the thermodecomposition‐based nanocrystal synthesis, resulting in a Fenton reaction rate 5.3 times higher than that of ferumoxytol, an FDA‐approved IONP. Compared with ferumoxytol, wüstite nanoparticles substantially increase the level of intracellular ROS in mouse mammary carcinoma cells. This study presents a novel mechanism and pivotal improvement for the development of highly efficient ROS‐inducing nanozymes, thereby expanding the horizons for their therapeutic applications.

Funder

National Science Foundation

National Institute of General Medical Sciences

National Institute of Biomedical Imaging and Bioengineering

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3