Rhenium Suppresses Iridium (IV) Oxide Crystallization and Enables Efficient, Stable Electrochemical Water Oxidation

Author:

Huo Wenjing1,Zhou Xuemei1ORCID,Jin Yuwei1,Xie Canquan1,Yang Shuo2,Qian Jinjie1,Cai Dong1,Ge Yongjie1,Qu Yongquan3,Nie Huagui1,Yang Zhi1

Affiliation:

1. Key Laboratory of Carbon Materials of Zhejiang Province Wenzhou University Wenzhou 325035 P. R. China

2. College of Electrical and Electronic Engineering Wenzhou University Wenzhou 325035 P. R. China

3. Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China

Abstract

AbstractIrO2as benchmark electrocatalyst for acidic oxygen evolution reaction (OER) suffers from its low activity and poor stability. Modulating the coordination environment of IrO2by chemical doping is a methodology to suppress Ir dissolution and tailor adsorption behavior of active oxygen intermediates on interfacial Ir sites. Herein, the Re‐doped IrO2with low crystallinity is rationally designed as highly active and robust electrocatalysts for acidic OER. Theoretical calculations suggest that the similar ionic sizes of Ir and Re impart large spontaneous substitution energy and successfully incorporate Re into the IrO2lattice. Re‐doped IrO2exhibits a much larger migration energy from IrO2surface (0.96 eV) than other dopants (Ni, Cu, and Zn), indicating strong confinement of Re within the IrO2lattice for suppressing Ir dissolution. The optimal catalysts (Re: 10 at%) exhibit a low overpotential of 255 mV at 10 mA cm−2and a high stability of 170 h for acidic OER. The comprehensive mechanism investigations demonstrate that the unique structural arrangement of the Ir active sites with Re‐dopant imparts high performance of catalysts by minimizing Ir dissolution, facilitating *OH adsorption and *OOH deprotonation, and lowering kinetic barrier during OER. This study provides a methodology for designing highly‐performed catalysts for energy conversion.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3