Operando Studies of Bismuth Nanoparticles Embedded in N, O‐Doped Porous Carbon for High‐Performance Potassium‐Ion Hybrid Capacitor

Author:

Liu Congcong1ORCID,Lu Qiongqiong12ORCID,Qu Jiang1,Feng Wen1,Thomas Alexander1,Li Yuxi3,Martinez Ignacio G. Gonzalez1,Pan Cunliang4,Mikhailova Daria1ORCID

Affiliation:

1. Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V. Helmholtzstraße 20 01069 Dresden Germany

2. Institute of Materials Henan Key Laboratory of Advanced Conductor Materials Henan Academy of Sciences Zhengzhou Henan 450046 China

3. Inorganic Chemistry II Technische Universität Dresden Bergstraße 66 01069 Dresden Germany

4. National Engineering Research Centre of Near‐Net‐Shape Forming Technology for Metallic Materials South China University of Technology Guangzhou 510640 China

Abstract

AbstractA highly viable alternative to lithium‐ion batteries for stationary electrochemical energy‐storage systems is the potassium dual‐ion hybrid capacitor (PIHC), especially toward fast‐charging capability. However, the sluggish reaction kinetics of negative electrode materials seriously impedes their practical implementation. In this paper, a new negative electrode Bi@RPC (Nano‐bismuth confined in nitrogen‐ and oxygen‐doped carbon with rationally designed pores, evidenced by advanced characterization) is developed, leading to a remarkable electrochemical performance. PIHCs building with the active carbon YP50F positive electrode result in a high operation voltage (0.1–4 V), and remarkably well‐retained energy density at a high‐power density (11107 W kg−1 at 98 Wh kg−1). After 5000 cycles the proposed PHICs still show a superior capacity retention of 92.6%. Moreover, a reversible mechanism of “absorption‐alloying” of the Bi@RPC nanocomposite is revealed by operando synchrotron X‐ray diffraction and Raman spectroscopy. With the synergistic potassium ions storage mechanism arising from the presence of well‐structured pores and nano‐sized bismuth, the Bi@RPC electrode exhibits an astonishingly rapid kinetics and high energy density. The results demonstrate that PIHCs with Bi@RPC‐based negative electrode is the promising option for simultaneously high‐capacity and fast‐charging energy storage devices.

Funder

China Scholarship Council

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3