Affiliation:
1. Dalian Key Lab of Marine Micro/Nano Energy and Self‐powered Systems, Marine Engineering College Dalian Maritime University Dalian 116026 China
2. Intelligent Biomimetic Design Lab, College of Engineering Peking University Beijing 100871 China
3. Liquid Metal and Cryogenic Biomedical Research Center Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
Abstract
AbstractDeveloping desirable sensors is crucial for underwater perceptions and operations. The perceiving organs of marine creatures have greatly evolved to react accurately and promptly underwater. Inspired by the fish lateral line, this study proposes a triboelectric dynamic pressure sensor for underwater perception. The biomimetic lateral line sensor (BLLS) has high sensitivity to the disturbance amplitude/frequency, good adaptability to underwater environments and (relative) low cost. The sensors are deployed at the bottom of the test basin to perceive various moving objects, such as a robotic fish, robotic seal, etc. By analyzing the electrical signal of the sensor, the motion parameters of the objects passed over can be obtained. By monitoring signal variations across multiple sensors, the ability to sense different disturbance movement trajectories, including linear and angular trajectories, is achievable. The study will prove significant in forming an unconventional underwater perceiving method, which can back‐up the sonic/optical sensors when are impaired in complex underwater environments.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献