Structural Antagonism‐Aided Conformational Regulation Enables an Aptamer‐Loop G‐Quadruplex Modular Sensor of β‐Lactoglobulin

Author:

Wang Xinxin123,Xu Ning4,Zhu Longjiao3,Yang He3,Li Chen1,Tian Hongtao1,Xu Wentao3ORCID

Affiliation:

1. College of Food Science and Technology Hebei Agricultural University Baoding 071001 China

2. College of Life Science and Engineering Handan University Handan 056005 China

3. Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing 100191 China

4. School of Life Science Tsinghua University Beijing 100091 China

Abstract

AbstractA simple, reliable method for identifying β‐lactoglobulin (β‐LG) in dairy products is needed to protect those with β‐LG allergies. A common, practical strategy for target detection is designing simplified nucleic acid nanodevices by integrating functional components. This work presents a label‐free modular β‐LG aptasensor consisting of an aptamer‐loop G‐quadruplex (G4), the working conformation of which is regulated by conformational antagonism to ensure respective module functionality and the related signal transduction. The polymorphic conformations of the module‐fused sequence are systematically characterized, and the cause is revealed as shifting antagonistic equilibrium. Combined with conformational folding dynamics, this helped regulate functional conformations by fine‐tuning the sequences. Furthermore, the principle of specific β‐LG detection by parallel G4 topology is examined as binding on the G4 aptamer loop by β‐LG to reinforce the G4 topology and fluorescence. Finally, a label‐free, assembly‐free, succinct, and turn‐on fluorescent aptasensor is established, achieving excellent sensitivity across five orders of magnitude, rapidly detecting β‐LG within 22‐min. This study provides a generalizable approach for the conformational regulation of module‐fused G4 sequences and a reference model for creating simplified sensing devices for a variety of targets.

Funder

Hebei Province Graduate Innovation Funding Project

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3