Highly Bright and Stable CsPbX3@Cs4PbX6 Hexagonal Nanoarchitectonics Created by Controlling Dissolution‐Recrystallization of CsPbX3 Nanomaterials

Author:

Xie Cong1,Zhang Xiao2,Chen Hsueh Shih3,Yang Ping1ORCID

Affiliation:

1. School of Material Science & Engineering University of Jinan Jinan 250022 P. R. China

2. Faculty of Chemical Engineering and Technology Cracow University of Technology Warszawska 24 St Krakow 31‐155 Poland

3. Department of Materials Science & Engineering National Tsing Hua University Hsinchu 30013 Taiwan

Abstract

AbstractCsPbBr3@Cs4PbBr6 hexagonal NCs with a bright photoluminescence (PL) peak of 456 nm are created through the dissolution‐recrystallization of CsPbBr3 nanoplatelets. Small CsPbBr3 nanocrystals are encapsulated in hexagonal Cs4PbBr6 during recrystallization to form a core‐shell structure and keep high brightness and stability. The recrystallization kinetics is systematically investigated to explore the roles of methyl acetate, oleylamine, and n‐hexane. Result further indicates that core/shell NCs remained high PL under a variety of harsh conditions (e.g., light irradiation and heat treatment) because of Cs4PbX6 shell and the controlling of recrystallization. Their initial PL intensity is remained after 4 months of storage under ambient conditions and continuous exposure to UV lamp for 180 min. The bright PL is also maintained even treatment at 120 °C. To indicate the universality of this synthesis method, CsPbX3@Cs4PbX6 hexagonal NCs with different emission colors are fabricated by changing temperature, solvent viscosity, and precursors (e,g, oleylamine and halogens). These core‐shell samples reveal bright and stable green, orange, and red PL. Because of its high stability, the core/shell NCs are dispersed in flexible films to create diverse patterns. The films also exhibit high brightness and excellent stability. This strategy opens a novel avenue for the application of perovskite nanomaterials in the display field.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3