Molecular Engineering of Ordered Piezoelectric Sulfonic Acid‐Containing Assemblies

Author:

Yuan Hui1,Cazade Pierre‐Andre2,Zhou Shuaikang3,Shimon Linda J. W.4,Yuan Chengqian5ORCID,Tan Dan3,Liu Cunshun3,Fan Wei5,Thangavel Vijayakanth1,Cao Yi6,Thompson Damien2,Yan Xuehai5,Yang Rusen3,Xue Bin6,Gazit Ehud1ORCID

Affiliation:

1. The Shmunis School of Biomedicine and Cancer Research Tel Aviv University Tel Aviv 6997801 Israel

2. Department of Physics Bernal Institute University of Limerick Limerick V94 T9PX Ireland

3. School of Advanced Materials and Nanotechnology Xidian University Xi'an 710126 China

4. Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel

5. State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China

6. National Laboratory of State Microstructure Department of Physics Nanjing University Nanjing Jiangsu 210093 China

Abstract

AbstractSulfonic acid‐containing bioorganic monomers with wide molecular designability and abundant hydrogen bonding sites hold great potential to design diverse functional biocrystals but have so far not been explored for piezoelectric energy harvesting applications due to the lack of strategies to break the centrosymmetry of their assemblies. Here, a significant molecular packing transformation from centrosymmetric into non‐centrosymmetric conformation by the addition of an amide terminus in the sulfonic acid‐containing bioorganic molecule is demonstrated, allowing a high electromechanical response. The amide‐functionalized molecule self‐assembles into a polar supramolecular parallel β‐sheet‐like structure with a high longitudinal piezoelectric coefficient d11 = 15.9 pm V−1 that produces the maximal open‐circuit voltage of >1 V and the maximal power of 18 nW in nanogenerator devices pioneered. By contrast, molecules containing an amino or a cyclohexyl terminus assemble into highly symmetric 3D hydrogen bonding diamondoid‐like networks or 2D double layer structures that show tunable morphologies, thermostability, and mechanical properties but non‐piezoelectricity. This work not only presents a facile approach to achieving symmetry transformation of bioorganic assemblies but also demonstrates the terminal group and the property correlation for tailor‐made design of high‐performance piezoelectric biomaterials.

Funder

National Natural Science Foundation of China

Science Foundation Ireland

Ministry of Science and Technology of the People's Republic of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3