Affiliation:
1. The Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
2. Department of Orthopedic Surgery Zhongshan Hospital Fudan University Shanghai 200032 China
3. School of Medicine and Dentistry Griffith University Australia 4222 Australia
Abstract
AbstractThe use of membrane‐based guided bone regeneration techniques has great potential for single‐stage reconstruction of critical‐sized bone defects. Here, a multifunctional bone regeneration membrane combining flexible elasticity, electrical stimulation (ES) and osteoinductive activity is developed by in situ doping of MXene 2D nanomaterials with conductive functionality and β‐TCP particles into a Poly(lactic acid‐carbonate (PDT) composite nano‐absorbable membrane (P/T/MXene) via electrostatic spinning technique. The composite membrane has good feasibility due to its temperature sensitivity, elastic memory capacity, coordinated degradation profile and easy preparation process. In vitro experiments showed the P/T/MXene membrane effectively promoted the recruitment and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under ES and enhanced the angiogenic capacity of endothelial cells, which synergistically promoted bone regeneration through neovascularization. In addition, an in vivo rat model of cranial bone defects further confirmed the bone regeneration efficacy of the P/T/MXene membrane. In conclusion, the developed P/T/MXene membrane can effectively promote bone regeneration through their synergistic multifunctional effects, suggesting the membranes have great potential for guiding tissue regeneration and providing guidance for the biomaterials design.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China