In Situ Constructing Metal–Organic Complex Interface Layer Using Biomolecule Enabling Stabilize Zn Anode

Author:

Yuan Zaifang12,Zhan Kaiyuan1,Li Di1,Pu Yujuan1,Zhang Youkui3,Zeng Xuzhong1,Luo Xiaoyu2,Zhang Yunhuai1,Li Xueming1ORCID,Wei Zidong1

Affiliation:

1. College of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 P. R. China

2. State Key Laboratory of Advanced Chemical Power Sources Guizhou Meiling Power Sources Co., Ltd. Zunyi 563 003 P. R. China

3. State Key Laboratory of Environment‐Friendly Energy Materials National Co‐Innovation Center for Nuclear Waste Disposal and Environmental Safety Southwest University of Science and Technology Mianyang 621010 P. R. China

Abstract

AbstractAqueous zinc‐ion batteries (ZIBs) are considered as a promising candidate for next‐generation large‐scale energy storage due to their high safety, low cost, and eco‐friendliness. Unfortunately, commercialization of ZIBs is severely hindered owing to rampant dendrite growth and detrimental side reactions on the Zn anode. Herein, inspired by the metal–organic complex interphase strategy, the authors apply adenosine triphosphate (ATP) to in situ construct a multifunctional film on the metal Zn surface (marked as ATP@Zn) by a facile etching method. The ATP‐induced interfacial layer enhances lipophilicity, promoting uniform Zn2+ flux and further homogenizing Zn deposition. Meanwhile, the functional interlayer improves the anticorrosion ability of the Zn anode, effectively suppressing corrosion and hydrogen evolution. Consequently, the as‐prepared ATP@Zn anode in the symmetric cell exhibits eminent plating/stripping reversibility for over 2800 h at 5.0 mA cm−2 and 1 mAh cm−2. Furthermore, the assembled ATP@Zn||MnO2 full cells are investigated to evaluate practical feasibilities. This work provides an efficient and simple strategy to prepare stabilized Zn anode toward high‐performance ZIBs.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3