Reversible Stacking of 2D ZnIn2S4 Atomic Layers for Enhanced Photocatalytic Hydrogen Evolution

Author:

Wu Liqin1,Li Mingjie1,Zhou Biao1,Xu Shuang1,Yuan Ligang1,Wei Jianwu1,Wang Jiarong1,Zou Shibing1,Xie Weiguang2ORCID,Qiu Yongcai1,Rao Mumin3,Chen Guangxu1,Ding Liming4ORCID,Yan Keyou1ORCID

Affiliation:

1. School of Environment and Energy State Key Lab of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology Guangzhou 510000 China

2. Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics Jinan University Guangzhou Guangdong 510632 China

3. Guangdong Energy Group Science and Technology Research Institute of Co., Ltd. Guangzhou 510630 China

4. Center of Excellence in Nanoscience (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China

Abstract

AbstractIt is technically challenging to reversibly tune the layer number of 2D materials in the solution. Herein, a facile concentration modulation strategy is demonstrated to reversibly tailor the aggregation state of 2D ZnIn2S4 (ZIS) atomic layers, and they are implemented for effective photocatalytic hydrogen (H2) evolution. By adjusting the colloidal concentration of ZIS (ZIS‐X, X = 0.09, 0.25, or 3.0 mg mL−1), ZIS atomic layers exhibit the significant aggregation of (006) facet stacking in the solution, leading to the bandgap shift from 3.21 to 2.66 eV. The colloidal stacked layers are further assembled into hollow microsphere after freeze‐drying the solution into solid powders, which can be redispersed into colloidal solution with reversibility. The photocatalytic hydrogen evolution of ZIS‐X colloids is evaluated, and the slightly aggregated ZIS‐0.25 displays the enhanced photocatalytic H2 evolution rates (1.11 µmol m−2 h−1). The charge‐transfer/recombination dynamics are characterized by time‐resolved photoluminescence (TRPL) spectroscopy, and ZIS‐0.25 displays the longest lifetime (5.55 µs), consistent with the best photocatalytic performance. This work provides a facile, consecutive, and reversible strategy for regulating the photo‐electrochemical properties of 2D ZIS, which is beneficial for efficient solar energy conversion.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3