Interfacial Electronic Interaction in Amorphous–Crystalline CeOx‐Sn Heterostructures for Optimizing CO2 to Formate Conversion

Author:

Zhu Ying1,Sun Xiang1,Zhang Rong1,Feng Xiaochen1,Zhu Ying12ORCID

Affiliation:

1. Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology Ministry of Education School of Chemistry Beihang University Beijing 100191 China

2. Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China

Abstract

AbstractFormate, a crucial chemical raw material, holds significant promise for industrial applications in the context of CO2 electroreduction reaction (CO2RR). Despite its potential, challenges, such as poor selectivity and low formation rate at high current densities persist, primarily due to the competing hydrogen evolution reaction (HER) and high energy barriers associated with *OCHO intermediate generation. Herein, one‐step chemical co‐reduction strategy is employed to construct an amorphous–crystalline CeOx‐Sn heterostructure, demonstrating remarkable catalytic performance in converting CO2 to formate. The optimized CeOx‐Sn heterostructures reach a current density of 265.1 mA cm−2 and a formate Faraday efficiency of 95% at −1.07 V versus RHE. Especially, CeOx‐Sn achieves a formate current density of 444.4 mA cm−2 and a formate production rate of 9211.8 µmol h−1 cm−2 at −1.67 V versus RHE, surpassing most previously reported materials. Experimental results, coupled with (density functional theory)DFT calculations confirm that robust interface interaction between CeOx and Sn active center induces electron transfer from crystalline Sn site to amorphous CeOx, some Ce4+of CeOx get electrons and convert to unsaturated Ce3+, optimizing the electronic structure of active Sn. This amorphous–crystalline heterostructure promotes electron transfer during CO2RR, reducing the energy barrier formed by *OCHO intermediates, and thus achieving efficient reduction of CO2 to formate.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3