Phosphorus‐Modified Amorphous High‐Entropy CoFeNiCrMn Compound as High‐Performance Electrocatalyst for Hydrazine‐Assisted Water Electrolysis

Author:

Li Kaixun1,He JinFeng1,Guan Xuze2,Tong Yun1,Ye Yutong1,Chen Lu2,Chen Pengzuo1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou Zhejiang 310018 China

2. Department of Chemical Engineering University College London Roberts Building Torrington Place London WC1E 7JE UK

Abstract

AbstractExploiting highly active and bifunctional catalysts for both hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) is a prerequisite for the hydrogen acquisition. High‐entropy materials have received widespread attention in catalysis, but the high‐performance bifunctional electrodes are still lacking. Herein, a novel P‐modified amorphous high‐entropy CoFeNiCrMn compound is developed on nickel foam (NF) by one‐step electrodeposition strategy. The achieved CoFeNiCrMnP/NF delivers remarkable HER and HzOR performance, where the overpotentials as low as 51 and 268 mV are realized at 100 mA cm−2. The improved cell voltage of 91 mV is further demonstrated at 100 mA cm−2 by assessing CoFeNiCrMnP/NF in the constructed hydrazine‐assisted water electrolyser, which is almost 1.54 V lower than the HER||OER system. Experimental results confirm the important role of each element in regulating the bifuncational performance of high‐entropy catalysts. The main influencing elements seem to be Fe and Ni for HER, while the P‐modification and Cr metal may contribute a lot for HzOR. These synergistic advantages help to lower the energy barriers and improve the reaction kinetics, resulting in the excellent bifunctional activity of the CoFeNiCrMnP/NF. The work offers a feasible strategy to develop self‐supporting electrode with high‐entropy materials for overall water splitting.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3