Interface and Morphology Engineered Amorphous Si for Ultrafast Electrochemical Lithium Storage

Author:

Sonia Farjana J.1ORCID,Haider Golam1ORCID,Ghosh Subrata23ORCID,Müller Martin4ORCID,Volochanskyi Oleksandr15ORCID,Bouša Milan1ORCID,Plšek Jan1ORCID,Kamruddin Mohammed3,Fejfar Antonín4,Kalbáč Martin1ORCID,Frank Otakar1ORCID

Affiliation:

1. J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences v.v.i., Dolejskova 2155/3 Prague 18223 Czech Republic

2. Micro and Nanostructured Materials Laboratory ‐NanoLab Department of Energy Politecnico di Milano via Ponzio 34/3 Milano 20133 Italy

3. Surface and Nanoscience Division Materials Science Group Indira Gandhi Centre for Atomic Research‐Homi Bhabha National Institute Kalpakkam 603102 India

4. FZU (Institute of Physics of the Czech Academy of Sciences) Prague 16200 Czech Republic

5. Faculty of Chemical Engineering Department of Physical Chemistry University of Chemistry and Technology in Prague Technická 5 Prague 16628 Czech Republic

Abstract

AbstractUltrafast high‐capacity lithium‐ion batteries are extremely desirable for portable electronic devices, where Si is the most promising alternative to the conventional graphite anode due to its very high theoretical capacity. However, the low electronic conductivity and poor Li‐diffusivity limit its rate capability. Moreover, high volume expansion/contraction upon Li‐intake/uptake causes severe pulverization of the electrode, leading to drastic capacity fading. Here, interface and morphology‐engineered amorphous Si matrix is being reported utilizing a few‐layer vertical graphene (VG) buffer layer to retain high capacity at both slow and fast (dis)charging rates. The flexible mechanical support of VG due to the van‐der‐Waals interaction between the graphene layers, the weak adhesion between Si and graphene, and the highly porous geometry mitigated stress, while the three‐dimensional mass loading enhanced specific capacity. Additionally, the high electronic conductivity of VG boosted rate‐capability, resulting in a reversible gravimetric capacity of ≈1270 mAh g−1 (areal capacity of ≈37 µAh cm−2) even after 100 cycles at an ultrafast cycling rate of 20C, which provides a fascinating way for conductivity and stress management to obtain high‐performance storage devices.

Funder

European Regional Development Fund

European Commission

Ministerstvo Školství, Mládeže a Tělovýchovy

Grantová Agentura České Republiky

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3