Highly Active CoNi‐CoN3 Composite Sites Synergistically Accelerate Oxygen Electrode Reactions in Rechargeable Zinc–Air Batteries

Author:

Li Nan1,Sun Mingzi2ORCID,Xiao Jiaxiang1,Ma Xiaoyu1,Huang Lijuan1,Li Hongyu1,Xie Chao1,Yang Yahui1,Jiang Hao13ORCID,Huang Bolong2ORCID,Zhang Wenjun3ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China

2. Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR 999077 China

3. Department of Materials Science and Engineering & Center of Super‐Diamond and Advanced Films City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 China

Abstract

AbstractReaching rapid reaction kinetics of oxygen reduction (ORR) and oxygen evolution reactions (OER) is critical for realizing efficient rechargeable zinc–air batteries (ZABs). Herein, a novel CoNi‐CoN3 composite site containing CoNi alloyed nanoparticles and CoN3 moieties is first constructed in N‐doped carbon nanosheet matrix (CoNi‐CoN3/C). Benefiting from the high electroactivity of CoNi‐CoN3 composite sites and large surface area, CoNi‐CoN3/C shows a superior half‐wave potential (0.88 V versus RHE) for ORR and a small overpotential (360 mV) for OER at 10 mA cm−2. Theoretical calculations have demonstrated that the introduction of CoNi alloys has modulated the electronic distributions near the CoN3 moiety, inducing the d‐band center of CoNi‐CoN3 composite site to shift down, thus stabilizing the valence state of Co active sites and balancing the adsorption of OER/ORR intermediates. Accordingly, the reaction energy trends exhibit optimized overpotentials for OER/ORR, leading to superior battery performances. For aqueous and flexible quasi‐solid‐state rechargeable ZABs with CoNi‐CoN3/C as catalyst, a large power density (250 mW cm−2) and high specific capacity (804 mAh g−1) are achieved. The in‐depth understanding of the electroactivity enhancement mechanism of interactive metal nanoparticles and metal coordinated with nitrogen (MNx) moieties is crucial for designing novel high‐performance metal/nitrogen‐doped carbon (M─N─C) catalysts.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3