Catalytic Potential of Supported Superatoms

Author:

Kilic Mehmet Emin1ORCID,Jena Puru1ORCID

Affiliation:

1. Department of Physics Virginia Commonwealth University Richmond VA 23284‐2000 USA

Abstract

AbstractThe importance of catalysts in industrial products is a driving factor in the search of efficient and cost‐effective catalysts, creating considerable interest in the past decade in single‐atom catalysis. One of the first requirements of a good catalyst is that it should bind to the molecules with energies intermediate between physisorption and chemisorption while simultaneously activating them. Herein, it is shown that superatoms, which are atomic clusters with fixed size and composition, can meet this challenge even better than the atoms whose chemistry they mimic. The reactions of molecules such as H2, O2, N2, CO, NO, and CO2 with an atom (Li) and its corresponding superatom (Li3O) are confirmed through study. As these clusters need to be supported on a substrate for practical applications, the study focuses on the reaction of CO2 with Li and Li3O supported on graphene, Au(111), and Cu(111) substrates. Using density functional theory, it is shown that the Li3O superatom can activate CO2 far greater than the Li atom – stretching the CO bond from 1.16 Å to as large as 1.30 Å and bending the O─C─O bond angle from 180° to as low as 120°. Equally interesting, the results are not very sensitive to the substrate.

Funder

National Energy Research Scientific Computing Center

Basic Energy Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3