Electrical Conductivity Boost: In Situ Polypyrrole Polymerization in Monolithically Integrated Surface‐Supported Metal‐Organic Framework Templates

Author:

Vello Tatiana Parra12ORCID,Albano Luiz Gustavo Simão1ORCID,dos Santos Thamiris Cescon3,Colletti Julia Cantovitz1,Santos Batista Carlos Vinícius13,Leme Vitória Fernandes Cintra1,dos Santos Thamiris Costa1,Miguel Maria Paula Dias Carneiro1,de Camargo Davi Henrique Starnini1,Bof Bufon Carlos César2345ORCID

Affiliation:

1. Brazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas São Paulo 13083‐970 Brazil

2. Department of Physical Chemistry Institute of Chemistry (IQ) University of Campinas (UNICAMP) Campinas São Paulo 13083‐862 Brazil

3. Postgraduate Program in Materials Science and Technology (POSMAT) São Paulo State University (UNESP) Bauru São Paulo 17033‐360 Brazil

4. Mackenzie Evangelical Faculty of Paraná (FEMPAR) Curitiba Paraná 80730‐000 Brazil

5. Mackenzie Presbyterian Institute (IPM) São Paulo São Paulo 01302‐907 Brazil

Abstract

AbstractRecent progress in synthesizing and integrating surface‐supported metal‐organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost‐effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials. This study introduces a method to improve the electrical conductivity of HKUST‐1 templates by in situ polymerization of conductive polypyrrole (PPy) chains within the SURMOF pores (named as PPy@HKUST‐1). Nanomembrane‐origami technology is employed for integration, allowing a rolled‐up metallic nanomembrane to contact the HKUST‐1 films without causing damage. After a 24 h loading period, the electrical conductivity at room temperature reaches approximately 5.10−6 S m−1. The nanomembrane‐based contact enables reliable electrical characterization even at low temperatures. Key parameters of PPy@HKUST‐1 films, such as trap barrier height, dielectric constant, and tunneling barrier height, are determined using established conduction mechanisms. These findings represent a significant advancement in real‐time control of SURMOF conductivity, opening pathways for innovative electronic‐optoelectronic device development. This study demonstrates the potential of SURMOFs to revolutionize hybrid electronic devices by enhancing electrical conductivity through intelligent integration strategies.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3