Solvent‐Free Synthesis of Covalent Organic Framework/Graphene Nanohybrids: High‐Performance Faradaic Cathodes for Supercapacitors and Hybrid Capacitive Deionization

Author:

Xu Liming1,Liu Yong2,Ding Zibiao1,Xu Xingtao3,Liu Xinjuan4,Gong Zhiwei5,Li Jiabao6,Lu Ting1,Pan Likun1ORCID

Affiliation:

1. Shanghai Key Laboratory of Magnetic Resonance School of Physics and Electronic Science East China Normal University Shanghai 200241 China

2. School of Materials Science and Engineering Qingdao University of Science and Technology Qingdao Shandong 266042 China

3. Marine Science and Technology College Zhejiang Ocean University Zhoushan Zhejiang 316022 China

4. School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China

5. School of Physics and Electronic Science East China Normal University Shanghai 200241 China

6. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China

Abstract

AbstractCovalent organic frameworks (COFs) with flexible periodic skeletons and ordered nanoporous structures have attracted much attention as potential candidate electrode materials for green energy storage and efficient seawater desalination. Further improving the intrinsic electronic conductivity and releasing porosity of COF‐based materials is a necessary strategy to improve their electrochemical performance. Herein, the employed graphene as the conductive substrate to in situ grow 2D redox‐active COF (TFPDQ‐COF) with redox activity under solvent‐free conditions to prepare TFPDQ‐COF/graphene (TFPDQGO) nanohybrids and explores their application in both supercapacitor and hybrid capacitive deionization (HCDI). By optimizing the hybridization ratio, TFPDQGO exhibits a large specific capacitance of 429.0 F g−1 due to the synergistic effect of the charge transport highway provided by the graphene layers and the abundant redox‐active centers contained in the COF skeleton, and the assembled TFPDQGO//activated carbon (AC) asymmetric supercapacitor possesses a high energy output of 59.4 Wh kg−1 at a power density of 950 W kg−1 and good cycling life. Furthermore, the maximum salt adsorption capacity (SAC) of 58.4 mg g−1 and stable regeneration performance is attained for TFPDQGO‐based HCDI. This study highlights the new opportunities of COF‐based hybrid materials acting as high‐performance supercapacitor and HCDI electrode materials.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3