Sustainable All‐Day Thermoelectric Power Generation From the Hot Sun and Cold Universe

Author:

Liu Meiling1ORCID,Li Xiansheng2,Li Liang1,Zhao Shanguang1,Zhu Jinglin1,Zhou Ting1,Lin Zhihan1,Li Jianjun1,Sun Bowen1,Pei Gang2,Zhao Bin2,Zou Chongwen1ORCID

Affiliation:

1. National Synchrotron Radiation Laboratory School of Nuclear Science and Technology University of Science and Technology of China Hefei Anhui 230029 P. R. China

2. Department of Thermal Science and Energy Engineering University of Science and Technology of China Hefei Anhui 230027 P. R. China

Abstract

AbstractEnergy conversion from the environment into electricity is the most direct and effective electricity source to sustainably power off‐grid electronics, once the electricity requirement exceeds the capability of traditional centralized power supply systems. Normally photovoltaic cells have enabled distributed power generation during the day, but do not work at night. Thus, efficient electricity generation technologies for a sustainable all‐day power supply with no necessity for energy storage remain a challenge. Herein, an innovative all‐day power generation strategy is reported, which self‐adaptively integrates the diurnal photothermal and nocturnal radiative cooling processes into the thermoelectric generator (TEG) via the spectrally dynamic modulated coating, to continuously harvest the energy from the hot sun and the cold universe for power generation. Synergistic with the optimized latent heat phase change material, the electricity generation performance of the TEG is dramatically enhanced, with a maximum power density exceeding 1000 mW m−2 during the daytime and up to 25 mW m−2 during the nighttime, corresponding to an improvement of 123.1% and 249.1%, compared with the conventional strategy. This work maximizes the utilization of ambient energy resources to provide an environmentally friendly and uninterrupted power generation strategy. This opens up new possibilities for sustained power generation both daytime and nighttime.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3