Hollow Cu/CoS2 Nanozyme with Defect‐Induced Enzymatic Catalytic Sites and Binding Pockets for Highly Sensitive Fluorescence Detection of Alkaline Phosphatase

Author:

Wang Han1,Su Ping1,Wei Wenyu1,Song Jiayi1,Yang Yi1ORCID

Affiliation:

1. Beijing Key Laboratory of Environmentally Harmful Chemical Analysis College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractAlong with an ever‐deepening understanding of the catalytic principle of natural enzymes, the rational design of high‐activity biomimetic nanozymes has become a hot topic in current research. Inspired by the active centers of natural enzymes consisting of catalytic sites and binding pockets, a Cu‐doped CoS2 hollow nanocube (Cu/CoS2 HNCs) nanozyme integrating substitution defects and vacancies is developed through a defect engineering strategy. It is shown that the vacancies and substitution defects in the developed Cu/CoS2 HNC nanozymes serve as binding pockets and catalytic sites, respectively. The construction of this key active center and the accelerated electron transfer from the Co/Cu redox cycle significantly improve the substrate affinity and catalytic efficiency of the Cu/CoS2 HNCs nanozymes, which results in the excellent catalytic performance of the Cu/CoS2 HNC nanozymes. Using the superior enzymatic activity of Cu/CoS2 HNCs, a fluorescence detection platform for alkaline phosphatase (ALP) is established, which is a wider detection range and lower limit of detection (LOD) than previous work. This work broadens the family of nanozymes and provide a new idea for the development of novel nanozymes with high enzyme activity, as well as a guideline for the construction of highly sensitive fluorescent sensors.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3