Highly Sustainable h‐BN Encapsulated MoS2 Hydrogen Evolution Catalysts

Author:

Lim Jungmoon1,Heo Su Jin2,Jung Min1,Kim Taehun1,Byeon Junsung1,Park HongJu1,Jang Jae Eun2,Hong John3,Moon Janghyuk4,Pak Sangyeon5,Cha SeungNam1ORCID

Affiliation:

1. Department of Physics Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do 16419 Republic of Korea

2. Department of Electrical Engineering and Computer Science Daegu Gyeongbuk Institute of Science & Technology (DGIST) Daegu 42988 Republic of Korea

3. School of Materials Science and Engineering Kookmin University Seoul 02707 Republic of Korea

4. Department of Energy Systems Engineering Chung‐Ang University Seoul 06974 Republic of Korea

5. School of Electronic and Electrical Engineering Hongik University Seoul 04066 Republic of Korea

Abstract

AbstractDespite the importance of the stability of the 2D catalysts in harsh electrolyte solutions, most studies have focused on improving the catalytic performance of molybdenum disulfide (MoS2) catalysts rather than the sustainability of hydrogen evolution. In previous studies, the vulnerability of MoS2 crystals is reported that the moisture and oxygen molecules can cause the oxidation of MoS2 crystals, accelerating the degradation of crystal structure. Therefore, optimization of catalytic stability is crucial for approaching practical applications in 2D catalysts. Here, it is proposed that monolayered MoS2 catalysts passivated with an atomically thin hexagonal boron nitride (h‐BN) layer can effectively sustain hydrogen evolution reaction (HER) and demonstrate the ultra‐high current density (500 mA cm⁻2 over 11 h) and super stable (64 h at 150 mA cm⁻2) catalytic performance. It is further confirmed with density functional theory (DFT) calculations that the atomically thin h‐BN layer effectively prevents direct adsorption of water/acid molecules while allowing the protons to be adsorbed/penetrated. The selective penetration of protons and prevention of crystal structure degradation lead to maintained catalytic activity and maximized catalytic stability in the h‐BN covered MoS2 catalysts. These findings propose a promising opportunity for approaching the practical application of 2D MoS2 catalysts having long‐term stability at high‐current operation.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3