Correlating Rate‐Dependent Transition Metal Dissolution between Structure Degradation in Li‐Rich Layered Oxides

Author:

Cao Bo1,Li Tianyi2,Zhao Wenguang1,Yin Liang2,Cao Hongbin1,Chen Dong1,Li Luxi2,Pan Feng1,Zhang Mingjian3ORCID

Affiliation:

1. School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 People's Republic of China

2. X‐ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

3. School of Science and Engineering The Chinese University of Hong Kong Shenzhen 518172 China

Abstract

AbstractUnderstanding the mechanism of the rate‐dependent electrochemical performance degradation in cathodes is crucial to developing fast charging/discharging cathodes for Li‐ion batteries. Here, taking Li‐rich layered oxide Li1.2Ni0.13Co0.13Mn0.54O2 as the model cathode, the mechanisms of performance degradation at low and high rates are comparatively investigated from two aspects, the transition metal (TM) dissolution and the structure change. Quantitative analyses combining spatial‐resolved synchrotron X‐ray fluorescence (XRF) imaging, synchrotron X–ray diffraction (XRD) and transmission electron microscopy (TEM) techniques reveal that low‐rate cycling leads to gradient TM dissolution and severe bulk structure degradation within the individual secondary particles, and especially the latter causes lots of microcracks within secondary particles, and becomes the main reason for the fast capacity and voltage decay. In contrast, high‐rate cycling leads to more TM dissolution than low‐rate cycling, which concentrates at the particle surface and directly induces the more severe surface structure degradation to the electrochemically inactive rock‐salt phase, eventually causing a faster capacity and voltage decay than low‐rate cycling. These findings highlight the protection of the surface structure for developing fast charging/discharging cathodes for Li‐ion batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3