Engineering the Au‐Cu2O Crystalline Interfaces for Structural and Catalytic Integration

Author:

Xu Wenjia12,Xiao Ruixue1,An Senyuan1,Li Chao3,Ding Jie4,Chen Hongyu1ORCID,Yang Hong Bin5,Feng Yuhua1ORCID

Affiliation:

1. Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 China

2. School of Physical and Mathematical Sciences Nanjing Tech University Nanjing 211816 China

3. Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China

4. The Institute for Advanced Studies Wuhan University Wuhan 430072 China

5. School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 China

Abstract

AbstractPrecise structural control has attracted tremendous interest in pursuit of the tailoring of physical properties. Here, this work shows that through strong ligand‐mediated interfacial energy control, Au‐Cu2O dumbbell structures where both the Au nanorod (AuNR) and the partially encapsulating Cu2O domains are highly crystalline. The synthetic advance allows physical separation of the Au and Cu2O domains, in addition to the use of long nanorods with tunable absorption wavelength, and the crystalline Cu2O domain with well‐defined facets. The interplay of plasmon and Schottky effects boosts the photocatalytic performance in the model photodegradation of methyl orange, showing superior catalytic efficiency than the AuNR@Cu2O core–shell structures. In addition, compared to the typical core–shell structures, the AuNR‐Cu2O dumbbells can effectively electrochemically catalyze the CO2 to C2+ products (ethanol and ethylene) via a cascade reaction pathway. The excellent dual function of both photo‐ and electrocatalysis can be attributed to the fine physical separation of the crystalline Au and Cu2O domains.

Funder

National Natural Science Foundation of China

Nanjing Tech University

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3