Novel Biocompatible Magnetoelectric MnFe2O4 Core@BCZT Shell Nano–Hetero‐Structures with Efficient Catalytic Performance

Author:

Chernozem Roman V.1ORCID,Urakova Alina O.1,Chernozem Polina V.1,Koptsev Danila A.1,Mukhortova Yulia R.12,Grubova Irina Yu.12,Wagner Dmitry V.3,Gerasimov Evgeny Yu.4,Surmeneva Maria A.12,Kholkin Andrei L.1,Surmenev Roman A.12

Affiliation:

1. Piezo‐ and Magnetoelectric Materials Research & Development Centre Research School of Chemistry & Applied Biomedical Sciences National Research Tomsk Polytechnic University Tomsk 634050 Russia

2. Physical Materials Science and Composite Materials Centre Research School of Chemistry & Applied Biomedical Sciences National Research Tomsk Polytechnic University Tomsk 634050 Russia

3. Faculty of Radiophysics National Research Tomsk State University Tomsk 634050 Russia

4. Catalyst Research Department Boreskov Institute of Catalysis Lavrentieva ave. 5 Novosibirsk 630090 Russia

Abstract

AbstractMagnetoelectric (ME) small‐scale robotic devices attract great interest from the scientific community due to their unique properties for biomedical applications. Here, novel ME nano hetero‐structures based on the biocompatible magnetostrictive MnFe2O4 (MFO) and ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) are developed solely via the hydrothermal method for the first time. An increase in the temperature and duration of the hydrothermal synthesis results in increasing the size, improving the purity, and inducing morphology changes of MFO nanoparticles (NPs). A successful formation of a thin epitaxial BCZT‐shell with a 2–5 nm thickness is confirmed on the MFO NPs (77 ± 14 nm) preliminarily treated with oleic acid (OA) or polyvinylpyrrolidone (PVP), whereas no shell is revealed on the surface of pristine MFO NPs. High magnetization is revealed for the developed ME NPs based on PVP‐ and OA‐functionalized MFO NPs (18.68 ± 0.13 and 20.74 ± 0.22 emu g−1, respectively). Moreover, ME NPs demonstrate 95% degradation of a model pollutant Rhodamine B within 2.5 h under an external AC magnetic field (150 mT, 100 Hz). Thus, the developed biocompatible core–shell ME NPs of MFO and BCZT can be considered as a promising tool for non‐invasive biomedical applications, environmental remediation, and hydrogen generation for renewable energy sources.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Russian Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3