Mechanical and Acoustic‐Driven BiFeO3 Composite Films‐Based Hybrid Nanogenerator for Energy Harvesting and Sensing Applications

Author:

Graham Sontyana Adonijah1,Manchi Punnarao1,Paranjape Mandar Vasant1,Yu Jae Su1ORCID

Affiliation:

1. Department of Electronics and Information Convergence Engineering Institute for Wearable Convergence Electronics Kyung Hee University 1732 Deogyeong‐daero, Giheung‐gu Yongin‐Si Gyeonggi‐do 17104 Republic of Korea

Abstract

AbstractNanogenerators for acoustic energy harvesting are still in the early stage of development, and many challenges such as the optimization of device structure and the design of efficient and sensitive materials need to be addressed. To solve the above‐mentioned problems, herein, advancement in synthesized multiferroic material for hybridizing the nanogenerator and efficient harvesting of various energies such as acoustic, mechanical, and vibrational energies is reported. Initially, bismuth ferrate (BiFeO3, BFO)‐based composite films are prepared with high ferroelectric and dielectric coefficients. The hybrid nanogenerator (HNG) based on a 3D‐printed structure has the highest electrical output which is further improved depending on the BFO loading concentration in the composite film. The 0.5 wt% BFO‐loaded PVDF‐based HNG offers the enhanced open circuit voltage, short circuit current, and charge density values of ≈30 V, ≈1 µA, and ≈10 µC/m2, respectively. The optimized HNG is employed to harvest mechanical energy from everyday human life. Furthermore, the HNG layers are used in the fabrication of a multi‐energy harvester/sensor (MEH/S) which can harvest/sense various vibrational and acoustic energies under different acoustic frequencies and amplitudes, respectively. The harvested energy from the MEH/S is tested to power portable electronics.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3