Elucidating the Reaction Mechanism of Mn2+ Electrolyte Additives in Aqueous Zinc Batteries

Author:

Li Zhao12ORCID,Li Yi3,Ren Xiaochuan4ORCID,Zhao Yuanxin2,Ren Zhiguo2,Yao Zeyin2,Zhang Wei2,Xu Hao1,Wang Zhong5ORCID,Zhang Nian6ORCID,Gu Yueliang2,Li Xiaolong2ORCID,Zhu Daming2ORCID,Zou Jianxin1ORCID

Affiliation:

1. National Engineering Research Center of Light Alloy Net Forming State Key Laboratory of Metal Matrix Composite Center of Hydrogen Science School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China

2. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

3. Institute for Clean Energy & Advanced Materials, School of Materials and Energy Southwest University Chongqing 400715 China

4. College of Texiles & Clothing Qingdao University Qingdao Shandong 266071 China

5. GRIPM Research Institute Co., Ltd. GRINM Group Beijing 101407 China

6. Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

Abstract

AbstractAqueous zinc batteries (ZIBs) have attracted considerable attention in recent years because of their high safety and eco‐friendly features. Numerous studies have shown that adding Mn2+ salts to ZnSO4 electrolytes enhanced overall energy densities and extended the cycling life of Zn/MnO2 batteries. It is commonly believed that Mn2+ additives in the electrolyte inhibit the dissolution of MnO2 cathode. To better understand the role of Mn2+ electrolyte additives, the ZIB using a Co3O4 cathode instead of MnO2 in 0.3 m MnSO4 + 3 m ZnSO4 electrolyte is built to avoid interference from MnO2 cathode. As expected, the Zn/Co3O4 battery exhibits electrochemical characteristics nearly identical to those of Zn/MnO2 batteries. Operando synchrotron X‐ray diffraction (XRD), ex situ X‐ray absorption spectroscopy (XAS), and electrochemical analyses are carried out to determine the reaction mechanism and pathway. This work demonstrates that the electrochemical reaction occurring at cathode involves a reversible Mn2+/MnO2 deposition/dissolution process, while a chemical reaction of Zn2+/Zn4SO4(OH)6∙5H2O deposition/dissolution is involved during part of the charge/discharge cycle due to the change in the electrolyte environment. The reversible Zn2+/Zn4SO4(OH)6∙5H2O reaction contributes no capacity and lowers the diffusion kinetics of the Mn2+/MnO2 reaction, which prevents the operation of ZIBs at high current densities.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3