Bilayer Interphase for Air‐Stable and Dendrite‐Free Lithium Metal Anode Cycling in Carbonate Electrolytes

Author:

Jeon A‐Re123ORCID,Han Byeol Yi1,Kwon Minhyung123,Yu Seung‐Ho2,Chung Kyung Yoon14,Shim Jimin5,Lee Minah13ORCID

Affiliation:

1. Energy Storage Research Center Korea Institute of Science and Technology (KIST) 14 Gil 5 Hwarang‐ro, Seongbuk‐gu Seoul 02792 Republic of Korea

2. Department of Chemical and Biological Engineering Korea University Seoul 02841 Republic of Korea

3. Graduate Institute of Ferrous & Eco Materials Technology (GIFT) Pohang University of Science and Technology (POSTECH) 77 Cheongam‐Ro, Nam‐Gu Pohang Gyeongbuk 37673 Republic of Korea

4. Division of Energy & Environment Technology KIST School Korea University of Science and Technology Seoul 02792 Republic of Korea

5. Department of Chemistry Education Seoul National University 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea

Abstract

AbstractThe intrinsic reactivity of lithium (Li) toward ambient air, combined with insufficient cycling stability in conventional electrolytes, hinders the practical adoption of Li metal anodes in rechargeable batteries. Here, a bilayer interphase for Li metal is introduced to address both its susceptibility to corrosion in ambient air and its deterioration during cycling in carbonate electrolytes. Initially, the Li metal anode is coated with a conformal bottom layer of polysiloxane bearing methacrylate, followed by further grafting with poly(vinyl ethylene carbonate) (PVEC) to enhance anti‐corrosion capability and electrochemical stability. In contrast to single‐layer applications of polysiloxane or PVEC, the bilayer design offers a highly uniform coating that effectively resists humid air and prevents dendritic Li growth. Consequently, it demonstrates stable plating/stripping behavior with only a marginal increase in overpotential over 200 cycles in carbonate electrolytes, even after exposure to ambient air with 46% relative humidity. The design concept paves the way for scalable production of high‐voltage, long‐cycling Li metal batteries.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

National Research Council of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3