Composite Solid Electrolyte with Continuous and Fast Organic–Inorganic Ion Transport Highways Created by 3D Crimped Nanofibers@functional Ceramic Nanowires

Author:

Yang Qi12,Li Geng3,Shi Dongjie3,Gao Lu12,Deng Nanping12,Kang Weimin12ORCID,Cheng Bowen1

Affiliation:

1. State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin 300387 P. R. China

2. School of Textile Science and Engineering Tiangong University Tianjin 300387 P. R. China

3. National Supercomputer Center in Tianjin Tianjin 300457 P. R. China

Abstract

AbstractA 3D crimped sulfonated polyethersulfone‐polyethylene oxide(C‐SPES/PEO) nanofiber membrane and long‐range lanthanum cobaltate(LaCoO3) nanowires are collectively doped into a PEO matrix to acquire a composite solid electrolyte (C‐SPES‐PEO‐LaCoO3) for all‐solid‐state lithium metal batteries(ASSLMBs). The 3D crimped structure enables the fiber membrane to have a large porosity of 90%. Therefore, under the premise of strongly guaranteeing the mechanical properties of C‐SPES‐PEO‐LaCoO3, the ceramic nanowires conveniently penetrated into the 3D crimped SPES nanofiber without being blocked, which can facilitate fast ionic conductivity by forming 3D continuous organic–inorganic ion transport pathways. The as‐prepared electrolyte delivers an excellent ionic conductivity of 2.5 × 10−4 S cm−1 at 30 °C. Density functional theory calculations indicate that the LaCoO3 nanowires and 3D crimped C‐SPES/PEO fibers contribute to Li+ movement. Particularly, the LiFePO4/C‐SPES‐PEO‐LaCoO3 /Li and NMC811/C‐SPES‐PEO‐LaCoO3/Li pouch cell have a high initial discharge specific capacity of 156.8 mAh g−1 and a maximum value of 176.7 mAh g−1, respectively. In addition, the universality of the penetration of C‐SPES/PEO nanofibers to functional ceramic nanowires is also reflected by the stable cycling performance of ASSLMBs based on the electrolytes, in which the LaCoO3 nanowires are replaced with Gd‐doped CeO2 nanowires. The work will provide a novel approach to high performance solid‐state electrolytes.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3