Charge Storage Mechanism in Electrospun Spinel‐Structured High‐Entropy (Mn0.2Fe0.2Co0.2Ni0.2Zn0.2)3O4 Oxide Nanofibers as Anode Material for Li‐Ion Batteries

Author:

Triolo Claudia12ORCID,Maisuradze Mariam23ORCID,Li Min23,Liu Yanchen4ORCID,Ponti Alessandro5ORCID,Pagot Gioele26ORCID,Di Noto Vito26ORCID,Aquilanti Giuliana7ORCID,Pinna Nicola4ORCID,Giorgetti Marco23ORCID,Santangelo Saveria12ORCID

Affiliation:

1. Dipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali (DICEAM) Università “Mediterranea,” Via Zehender, Loc. Feo di Vito Reggio Calabria 89122 Italy

2. National Reference Center for Electrochemical Energy Storage (GISEL) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Firenze 50121 Italy

3. Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale del Risorgimento 4 Bologna 40136 Italy

4. Department of Chemistry IRIS Adlershof & The Center for the Science of Materials Berlin Humboldt‐Universität zu Berlin Brook‐Taylor‐Str. 2 12489 Berlin Germany

5. Laboratorio di Nanotecnologie Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) Consiglio Nazionale delle Ricerche Via Fantoli 16/15 Milano 20138 Italy

6. Department of Industrial Engineering Section of Chemistry for the Technology (ChemTech) University of Padova Via Marzolo 9 Padova (PD) 35131 Italy

7. Elettra Sincrotrone Trieste S.C.p.A. s.s. 14 km 163.5, Basovizza Trieste 34149 Italy

Abstract

AbstractHigh‐entropy oxides (HEOs) have emerged as promising anode materials for next‐generation lithium‐ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen‐deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs. A thorough investigation of the material properties and Li+ storage mechanism is carried out by several analytical techniques, including ex situ synchrotron X‐ray absorption spectroscopy. The lithiation process is elucidated in terms of lithium insertion, cation migration, and metal‐forming conversion reaction. The process is not fully reversible and the reduction of cations to the metallic form is not complete. In particular, iron, cobalt, and nickel, initially present mainly as Fe3+, Co3+/Co2+, and Ni2+, undergo reduction to Fe0, Co0, and Ni0 to different extent (Fe < Co < Ni). Manganese undergoes partial reduction to Mn3+/Mn2+ and, upon re‐oxidation, does not revert to the pristine oxidation state (+4). Zn2+ cations do not electrochemically participate in the conversion reaction, but migrating from tetrahedral to octahedral positions, they facilitate Li‐ion transport within lattice channels opened by their migration. Partially reversible crystal phase transitions are observed.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3