Quantitative Prediction of Inorganic Nanomaterial Cellular Toxicity via Machine Learning

Author:

Shirokii Nikolai1,Din Yevgeniya1,Petrov Ilya1,Seregin Yurii1,Sirotenko Sofia1,Razlivina Julia1,Serov Nikita2,Vinogradov Vladimir1ORCID

Affiliation:

1. International Institute “Solution Chemistry of Advanced Materials and Technologies” ITMO University 191002 Saint‐Petersburg Russian Federation

2. Advanced Engineering School Almetyevsk State Oil Institute Almetyevsk Russia

Abstract

AbstractOrganic chemistry has seen colossal progress due to machine learning (ML). However, the translation of artificial intelligence (AI) into materials science is challenging, where biological behavior prediction becomes even more complicated. Nanotoxicity is a critical parameter that describes their interaction with the living organisms screened in every bio‐related research. To prevent excessive experiments, such properties have to be pre‐evaluated. Several existing ML models partially fulfill the gap by predicting whether a nanomaterial is toxic or not. Yet, this binary categorization neglects the concentration dependencies crucial for experimental scientists. Here, an ML‐based approach is proposed to the quantitative prediction of inorganic nanomaterial cytotoxicity achieving the precision expressed by 10‐fold cross‐validation (CV) Q2 = 0.86 with the root mean squared error (RMSE) of 12.2% obtained by the correlation‐based feature selection and grid search‐based model hyperparameters optimization. To provide further model flexibility, quantitative atom property‐based nanomaterial descriptors are introduced allowing the model to extrapolate on unseen samples. Feature importance is calculated to find an interpretable model with optimal decision‐making. These findings allow experimental scientists to perform primary in silico candidate screening and minimize the number of excessive, labor‐intensive experiments enabling the rapid development of nanomaterials for medicinal purposes.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3