Affiliation:
1. Tianjin Key Lab for Rare Earth Materials and Applications Center for Rare Earth and Inorganic Functional Materials Smart Sensing Interdisciplinary Science Center School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
2. College of Chemistry Nankai University Tianjin 300071 P. R. China
3. State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials and School of Resources Environment and Materials Guangxi University Nanning 530004 P. R. China
Abstract
AbstractCesium lead halide (CsPbX3, X = Br, Cl, and I) nanocrystals (NCs) are widely concerned and applied in many fields due to the excellent photoelectric performance. However, the toxicity of Pb and the loss of luminescence in water limit its application in vivo. A stable perovskite nanomaterial with good bioimaging properties is developed by incorporating europium (Eu) in CsPbX3 NCs followed with the surface coating of silica (SiO2) shell (CsPbX3:Eu@SiO2). Through the surface coating of SiO2, the luminescence stability of CsPbBr3 in water is improved and the leakage of Pb2+ is significantly reduced. In particular, Eu doping inhibits the photoluminescence quantum yield reduction of CsPbBr3 caused by SiO2 coating, and further reduces the release of Pb2+. CsPbBr3:Eu@SiO2 nanoparticles (NPs) show efficient luminescence in water and good biocompatibility to achieve cell imaging. More importantly, CsPb(ClBr)3:Eu@SiO2 NPs are obtained by adjusting the halogen components, and green light and blue light are realized in zebrafish imaging, showing good imaging effect and biosafety. The work provides a strategy for advanced perovskite nanomaterials toward biological practical application.
Funder
National Natural Science Foundation of China
Higher Education Discipline Innovation Project
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献