Affiliation:
1. State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
2. Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 P. R. China
3. Research Institute of Electrochemical Energy Department of Energy and Environment (RIECEN) National Institute of Advanced Industrial Science and Technology (AIST) 1‐8‐31 Midorigaoka Ikeda Osaka 563‐8577 Japan
Abstract
AbstractA highly efficient g‐C3N4 photocatalyst is developed by a novel one‐pot thermal polymerization method under a salt fog environment generated by heating the aqueous solution of urea and mixed metal salts of NaCl/KCl, namely SF‐CN. Thanks to the synergistic effect of the oxygenation and chemical etching of the salt fog, the obtained SF‐CN is an oxygenated ultrathin porous carbon nitride with an intermolecular triazine‐heptazine heterostructure, meanwhile, shows enlarged specific surface area, greatly enhanced absorption of visible light, narrowed band gap with a lower conduction band, and an increased photocurrent response due to the effective separation of photogenerated holes and electrons, comparing to those of pristine g‐C3N4. The theoretical simulations further reveal that the triazine‐heptazine heterostructure possesses better photocatalytic hydrogen evolution (PHE) capability than pure triazine and heptazine carbon nitrides. In turn, SF‐CN demonstrates an excellent visible light PHE rate of 18.13 mmol h−1 g−1, up to 259.00 times of that of pristine g‐C3N4.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献