Uncovering the Size‐Dependent Thermal Solid Transformation of Akaganéite

Author:

Wang Xiang1,He Yang23,Liu Lili1,Song Duo1,Kovarik Libor1,Bowden Mark E.1,Engelhard Mark2,Li Xiaoxu1,Du Yingge1,Miller Quin RS1,Wang Chongmin2,De Yoreo James J.14,Rosso Kevin M.1,Zhang Xin1ORCID

Affiliation:

1. Physical & Computational Science Directorate Pacific Northwest National Laboratory Richland Washington 99354 United States

2. Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland Washington 99354 United States

3. Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 10083 China

4. Department of Materials Science and Engineering University of Washington Seattle Washington 98195 United States

Abstract

AbstractInvestigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in‐situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex‐situ characterization to thoroughly analyze the thermal solid‐phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size‐dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ‐Fe2O3) and subsequent crystal growth. Specifically, it is observed that akaganéite nanorods with a diameter of ∼50 nm transformed into hollow polycrystalline maghemite nanorods, which demonstrated remarkable stability without arresting crystal growth under continuous heating. In contrast, smaller akaganéite nanoneedles or nanowires with a diameter ranging from 20 to 8 nm displayed a propensity for forming single‐crystal nanoneedles or nanowires through phase transformation and densification. By manipulating the size of the precursors, a straightforward method is developed for the synthesis of single‐crystal and polycrystalline maghemite nanowires through solid‐phase transformation. These significant findings provide new insights into the size‐dependent structural evolution and phase transformation of iron oxides at the nanoscale.

Funder

Pacific Northwest National Laboratory

Battelle

Basic Energy Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3