Enabling Specific Benzene Oxidation by Tuning the Adsorption Behavior on Au Loaded MgAl Layered Double Hydroxides

Author:

Shen Tianyang1,Song Ziheng1,Li Jiaxin1,bai Sha1,Liu Guihao1,Sun Xiaoliang1,Li Shaoquan1,Chen Wei12,Zheng Lirong3,Song Yu‐Fei12ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

2. Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou Zhejiang Province 324000 P. R. China

3. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractDirect and selective oxidation of benzene to phenol is a long‐term goal in industry. Although great efforts have been made in homogenous catalysis, it still remains a huge challenge to drive this reaction via heterogeneous catalysts under mild conditions. Herein, a single‐atom Au loaded MgAl‐layered double hydroxide (Au1‐MgAl‐LDH) with a well‐defined structure, in which the Au single atoms are located on the top of Al3+ with Au‐O4 coordination as revealed by extended x–ray–absorption fine–structure (EXAFS)and density–functional theory (DFT)calculation is reported. The photocatalytic results prove the Au1‐MgAl‐LDH is capable of driving benzene oxidation reaction with O2 in water, and exhibits a high selectivity of 99% for phenol. While contrast experiment shows a ≈99% selectivity for aliphatic acid with Au nanoparticle loaded MgAl‐LDH (Au‐NP‐MgAl‐LDH). Detailed characterizations confirm that the origin of the selectivity difference can be attributed to the profound adsorption behavior of substrate benzene with Au single atoms and nanoparticles. For Au1‐MgAl‐LDH, single Au‐C bond is formed in benzene activation and result in the production of phenol. While for Au‐NP‐MgAl‐LDH, multiple AuC bonds are generated in benzene activation, leading to the crack of CC bond.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3