Liquid–Liquid Phase Separation Mediated Formation of Chiral 2D Crystalline Nanosheets of a Co‐Assembled System

Author:

Elizebath Drishya12ORCID,Vedhanarayanan Balaraman13ORCID,Raj Aparna4ORCID,Sudarsanakumar C.4ORCID,Lin Tsung‐Wu3ORCID,Praveen Vakayil K.12ORCID

Affiliation:

1. Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (CSIR‐NIIST) Thiruvananthapuram Kerala 695019 India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India

3. Department of Chemistry Tunghai University No.1727, Section 4, Taiwan Boulevard, Xitun District Taichung City 40704 Taiwan

4. School of Pure and Applied Physics Mahatma Gandhi University Kottayam Kerala 686560 India

Abstract

AbstractThe role of macromolecule‐macromolecule and macromolecule–H2O interactions and the resulting perturbation of the H‐bonded network of H2O in the liquid–liquid phase separation (LLPS) process of biopolymers are well‐known. However, the potential of the hydrated state of supramolecular structures (non‐covalent analogs of macromolecules) of synthetic molecules is not widely recognized for playing a similar role in the LLPS process. Herein, LLPS occurred during the co‐assembly of hydrated supramolecular vesicles (bolaamphiphile, BA1) with a net positive charge (zeta potential, ζ = +60 ± 2 mV) and a dianionic chiral molecule (disodium l‐[+]‐tartrate) is reported. As inferred from cryo‐transmission electron microscopy (TEM), the LLPS‐formed droplets serve as the nucleation precursors, dictating the structure and properties of the co‐assembly. The co‐assembled structure formed by LLPS effectively integrates the counter anion's asymmetry, resulting in the formation of ultrathin free‐standing, chiral 2D crystalline sheets. The significance of the hydrated state of supramolecular structures in influencing LLPS is unraveled through studies extended to a less hydrated supramolecular structure of a comparable system (BA2). The role of LLPS in modulating the hydrophobic interaction in water paves the way for the creation of advanced functional materials in an aqueous environment.

Funder

Mission on Nano Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3