Affiliation:
1. Department of Molecular Science and Technology Ajou University Suwon 16499 Republic of Korea
2. Department of Electrical and Computer Engineering Inter‐university Semiconductor Research Center and Soft Foundry Institute Seoul National University Seoul 08826 Republic of Korea
3. AI‐Superconvergence KIURI Translational Research center Ajou University Suwon 16499 Republic of Korea
Abstract
AbstractAn approach for synthesizing AgInZnS/CdS/ZnS core–shell–shell quantum dots (QDs) that demonstrate exceptional stability and electroluminescence (EL) performance is introduced. This approach involves incorporating a cadmium sulfide (CdS) interlayer between an AgInZnS (AIZS) core and a zinc sulfide (ZnS) shell to prevent the diffusion of Zn ions into the AIZS core and the cation exchange at the core–shell interface. Consequently, a uniform and thick ZnS shell, with a thickness of 2.9 nm, is formed, which significantly enhances the stability and increases the photoluminescence quantum yield (87.5%) of the QDs. The potential for AIZS/CdS/ZnS QDs in electroluminescent devices is evaluated, and an external quantum efficiency of 9.6% in the 645 nm is achieved. These findings highlight the importance of uniform and thick ZnS shells in improving the stability and EL performance of QDs.
Funder
National Research Foundation of Korea
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献