A Delicate Balance Between Spin‐Wave Mediated Weak Localization and Electron‐Phonon Scattering in the Design of Zero Temperature Coefficient of Resistivity

Author:

Yuan Xiuliang1,Sun Ying1ORCID,Guo Huaiming1,Du Yi1,Shi Kewen2,Hao Weichang1,Wang Cong12

Affiliation:

1. School of Physics Beihang University Beijing 100191 China

2. School of Integrated Circuit Science and Engineering Beihang University Beijing 100191 China

Abstract

AbstractZero thermal coefficients of resistivity (ZTCR) materials exhibit minimal changes in resistance with temperature variations, making them essential in modern advanced technologies. The current ZTCR materials, which are based on the resistivity saturation effect of heavy metals, tend to function at elevated temperatures because the mean free path approaches the lower limit of the semiclassical Boltzmann theory when the temperature is sufficiently high. ZTCR materials working at low‐temperatures are difficult to achieve due to electron‐phonon scattering, which results in increased resistivity according to Bloch's theory. In this work, the ZTCR behavior at low‐temperatures is realized in pre‐microstrained Mn3NiN. The delicate balance between the resistivity contribution from electron‐phonon scattering and spin‐wave mediated weak localization is well revealed. A remarkable temperature coefficient of resistivity (TCR) value as low as 1.9 ppm K−1 (50 K ≤ T ≤ 200 K) is obtained, which is significantly superior to the threshold value of ZTCR behavior and the application standard of commercial ZTCR materials. The demonstration provides a unique paradigm in the design of ZTCR materials through the contraction effects of two opposite conductance mechanisms with positive and negative thermal coefficients of resistivity.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3