Nanotubes from Transition Metal Dichalcogenides: Recent Progress in the Synthesis, Characterization and Electrooptical Properties

Author:

Yadgarov Lena1ORCID,Tenne Reshef2ORCID

Affiliation:

1. The Department of Chemical Engineering Ariel University Ramat HaGolan St 65 Ariel 4077625 Israel

2. Department of Molecular Chemistry and Materials Science Weizmann Institute Hertzl Street 234 Rehovot 7610010 Israel

Abstract

AbstractInorganic layered compounds (2D‐materials), particularly transition metal dichalcogenide (TMDC), are the focus of intensive research in recent years. Shortly after the discovery of carbon nanotubes (CNTs) in 1991, it was hypothesized that nanostructures of 2D‐materials can also fold and seam forming, thereby nanotubes (NTs). Indeed, nanotubes (and fullerene‐like nanoparticles) of WS2 and subsequently from MoS2 were reported shortly after CNT. However, TMDC nanotubes received much less attention than CNT until recently, likely because they cannot be easily produced as single wall nanotubes with well‐defined chiral angles. Nonetheless, NTs from inorganic layered compounds have become a fertile field of research in recent years. Much progress has been achieved in the high‐temperature synthesis of TMDC nanotubes of different kinds, as well as their characterization and the study of their properties and potential applications. Their multiwall structure is found to be a blessing rather than a curse, leading to intriguing observations. This concise minireview is dedicated to the recent progress in the research of TMDC nanotubes. After reviewing the progress in their synthesis and structural characterization, their contributions to the research fields of energy conversion and storage, polymer nanocomposites, andunique optoelectronic devices are being reviewed. These studies suggest numerous potential applications for TMDC nanotubes in various technologies, which are briefly discussed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3