Regulating Grafting Density to Realize High‐Areal‐Capacity Silicon Submicroparticle Anodes Under Ultralow Binder Content

Author:

Li Zeheng12,Qiu Juncheng1,Tang Weiting1,Wan Zhengwei2,Wu Zhuoying2,Lin Zhen1,Lai Guoyong1,Wei Xiujuan1,Jin Chengbin3,Yan Lijing3,Wu Shuxing1ORCID,Lin Zhan1

Affiliation:

1. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

2. Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China

3. College of Materials and Chemistry China Jiliang University Hangzhou 310018 China

Abstract

AbstractGrafted biopolymer binders are demonstrated to improve the processability and cycling stability of the silicon (Si) nanoparticle anodes. However, there is little systematical exploration regarding the relationship between grafting density and performance of grafted binder for Si anodes, especially when Si particles exceed the critical breaking size. Herein, a series of guar gum grafted polyacrylamide (GP) binders with different grafting densities are designed and prepared to determine the optimal grafting density for maximizing the electrochemical performance of Si submicroparticle (SiSMP) anodes. Among various GP binders, GP5 with recommended grafting density demonstrates the strongest adhesion strength, best mechanical properties, and highest intrinsic ionic conductivity. These characteristics enable the SiSMP electrodes to sustain the electrode integrity and accelerate lithium‐ion transport kinetics during cycling, resulting in high capacity and stable cyclability. The superior role of GP5 binder in enabling robust structure and stable interface of SiSMP electrodes is revealed through the PeakForce atomic force microscopy and in situ differential electrochemical mass spectrometry. Furthermore, the stable cyclabilities of high‐loading SiSMP@GP5 electrode with ultralow GP5 content (1 wt%) at high areal capacity as well as the good cyclability of Ah‐level LiNi0.8Co0.1Mn0.1O2/SiSMP@GP5 pouch cell strongly confirms the practical viability of the GP5 binder.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3