Rational Manipulation of Active CNT Encapsulated Fe Doped NiCoP Nanoparticles In Situ Grown in Hierarchically Carbonized Wood for High‐Current‐Density Water Splitting

Author:

Tian Cuihua1ORCID,Tian Sheng2,Luo Sha1,Li Lei1,Wu Yiqiang1,Qing Yan1,Yang Shoulu1

Affiliation:

1. College of Materials Science and Engineering Central South University of Forestry and Technology Changsha Hunan 410004 China

2. College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China

Abstract

AbstractPrecise morphology design and electronic structure regulation are critically significant to promote catalytic activity and stability for electrochemical hydrogen production at high current density. Herein, the carbon nanotube (CNT) encapsulated Fe‐doped NiCoP nanoparticles is in‐situ grown in hierarchical carbonized wood (NCF0.5P@CNT/CW) for water splitting. Coupling merits of porous carbonized wood (CW) substrate, CNT encapsulating and Fe doping, the NCF0.5P@CNT/CW features remarkable and durable electrocatalytic activity. The overpotentials of NCF0.5P@CNT/CW at 50 mA cm−2 mV and 205 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) and features high current density of 800 mA cm−2 within 300 mV for both OER and HER. Moreover, NCF0.5P@CNT/CW displays outstanding overall water splitting performance (η50 = 1.62 V and η100 = 1.67 V), outperforming Pt/C║RuO250 = 1.74 V), and can achieve the current density of 700 mA cm−2 at a lower cell voltage of 1.78 V. Overpotential is only 4.0 % decay after 120 h measurement at 50 mA cm−2. Density functional theory (DFT) calculations reveals Fe doping optimizes the binding energy and Gibbs free energy of intermediates, and regulates d‐band center of NCF0.5P@CNT/CW. Such synergistic strategy of morphology manipulation and electronic structure optimization provides a spark for developing effective and robust bifunctional catalysts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3