Affiliation:
1. Robert Fredrick Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 USA
2. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332‐0245 USA
Abstract
AbstractSmart materials are versatile material systems which exhibit a measurable response to external stimuli. Recently, smart material systems have been developed which incorporate graphene in order to share on its various advantageous properties, such as mechanical strength, electrical conductivity, and thermal conductivity as well as to achieve unique stimuli‐dependent responses. Here, a graphene fiber‐based smart material that exhibits reversible electrical conductivity switching at a relatively low temperature (60 °C), is reported. Using molecular dynamics (MD) simulation and density functional theory‐based non‐equilibrium Green's function (DFT‐NEGF) approach, it is revealed that this thermo‐response behavior is due to the change in configuration of amphiphilic triblock dispersant molecules occurring in the graphene fiber during heating or cooling. These conformational changes alter the total number of graphene‐graphene contacts within the composite material system, and thus the electrical conductivity as well. Additionally, this graphene fiber fabrication approach uses a scalable, facile, water‐based method, that makes it easy to modify material composition ratios. In all, this work represents an important step forward to enable complete functional tuning of graphene‐based smart materials at the nanoscale while increasing commercialization viability.
Funder
National Science Foundation
Materials Research Science and Engineering Center, Harvard University
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献