Tailoring the Angular Mismatch in MoS2 Homobilayers through Deformation Fields

Author:

Burns Kory123ORCID,Tan Anne Marie Z.1ORCID,Hachtel Jordan A.4ORCID,Aditya Anikeya5ORCID,Baradwaj Nitish5ORCID,Mishra Ankit5,Linker Thomas5ORCID,Nakano Aiichiro5ORCID,Kalia Rajiv5ORCID,Lang Eric J.26,Schoell Ryan2ORCID,Hennig Richard G.1ORCID,Hattar Khalid27ORCID,Aitkaliyeva Assel1ORCID

Affiliation:

1. Department of Materials Science & Engineering University of Florida Gainesville FL 32611 USA

2. Center for Integrated Nanotechnologies Sandia National Laboratories Albuquerque NM 87545 USA

3. Department of Materials Science & Engineering University of Virginia Charlottesville VA 22904 USA

4. Center for Nanophase Materials Science Oak Ridge National Laboratory Oak Ridge TN 37830 USA

5. Department of Physics University of Southern California Los Angeles CA 90089 USA

6. Department of Nuclear Engineering University of New Mexico Albuquerque NM 87131 USA

7. Department of Nuclear Engineering University of Tennessee Knoxville TN 37996 USA

Abstract

AbstractUltrathin MoS2 has shown remarkable characteristics at the atomic scale with an immutable disorder to weak external stimuli. Ion beam modification unlocks the potential to selectively tune the size, concentration, and morphology of defects produced at the site of impact in 2D materials. Combining experiments, first‐principles calculations, atomistic simulations, and transfer learning, it is shown that irradiation‐induced defects can induce a rotation‐dependent moiré pattern in vertically stacked homobilayers of MoS2 by deforming the atomically thin material and exciting surface acoustic waves (SAWs). Additionally, the direct correlation between stress and lattice disorder by probing the intrinsic defects and atomic environments are demonstrated. The method introduced in this paper sheds light on how engineering defects in the lattice can be used to tailor the angular mismatch in van der Waals (vdW) solids.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3