Affiliation:
1. Beijing Key Laboratory of Environmental Science and Engineering School of Material Science & Engineering Beijing Institute of Technology Beijing 100081 China
2. Institute of Advanced Technology Beijing Institute of Technology Jinan 250300 China
3. Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 China
Abstract
AbstractLithium (Li) metal batteries have attracted considerable research attention due to their exceptionally high theoretical capacity. However, the commercialization of Li metal batteries faces challenges, primarily attributed to uncontrolled growth of Li dendrites, which raises safety concerns and lowers coulombic efficiency. To mitigate Li dendrites growth and attain dense Li deposition, the hybrid SiO2‐Cu2O lithiophilic film applied to a 3D copper foam current collector is developed to regulate the interfacial properties for achieving even and dense Li deposition. The SiO2‐Cu2O possesses strong Li+ trapping capability through strong lithiophilicity from Cu2O. Additionally, the SiO2‐Cu2O enables uniform ion diffusion through the domain‐limiting effect of the holes in the SiO2 layer, inducing an even and dense Li plating/stripping behavior at a large capacity. Furthermore, the SiO2 layer promotes the formation of an initial high inorganic content Solid Electrolyte Interphase (SEI) through selective preferential binding with anion and solvent molecules. When the SiO2‐Cu2O@Li anode is coupled with a LiFePO4 (LFP) cathode, the resulting full cell exhibits superior cycling stability and rate performance. These results provide a facile approach to construct a lithiophilic current collector for practical Li metal anodes.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province