Local Electric Field Induced by Atomic‐Level Donor–Acceptor Couple of O Vacancies and Mn Atoms Enables Efficient Hybrid Capacitive Deionization

Author:

Fu Zhenzhen1,Wang Dewei1,Yao Yebo1,Gao Xueying1,Liu Xia1,Wang Shiyu1,Yao Shuyun1,Wang Xiaoxuan1,Chi Xinyue1,Zhang Kaixin1,Xiong Yuanyuan1,Wang Jinrui1,Hou Zishan1,Yang Zhiyu1,Yan Yi‐Ming1ORCID

Affiliation:

1. State Key Lab of Organic‐Inorganic Composites Beijing Advanced Innovation Centre for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractTransition metal oxides suffer from slow salt removal rate (SRR) due to inferior ions diffusion ability in hybrid capacitive deionization (HCDI). Local electric field (LEF) can efficiently improve the ions diffusion kinetics in thin electrodes for electrochemical energy storage. Nevertheless, it is still a challenge to facilitate the ions diffusion in bulk electrodes with high loading mass for HCDI. Herein, this work delicately constructs a LEF via engineering atomic‐level donor (O vacancies)–acceptor (Mn atoms) couples, which significantly facilitates the ions diffusion and then enables a high‐performance HCDI. The LEF boosts an extended accelerated ions diffusion channel at the particle surface and interparticle space, resulting in both remarkably enhanced SRR and salt removal capacity. Convincingly, the theoretical calculations demonstrate that electron‐enriched Mn atoms center coupled with an electron‐depleted O vacancies center is formed due to the electron back‐donation from O vacancies to adjacent Mn centers. The resulted LEF efficiently reduce the ions diffusion energy barrier. This work sheds light on the effect of atomic‐level LEF on improving ions diffusion kinetics at high loading mass application and paves the way for the design of transition metal oxides toward high‐performance HCDI applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3