α‐MnO2 Cathode with Oxygen Vacancies Accelerated Affinity Electrolyte for Dual‐Ion Co‐Encapsulated Aqueous Aluminum Ion Batteries

Author:

Yang Xiaohu1,Sun Qiwen1,Chai Luning1,Chen Song1,Zhang Wenming1,Yang Hui Ying2ORCID,Li Zhanyu1

Affiliation:

1. Hebei Key Laboratory of Optic‐Electronic Information and Materials National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices College of Physics Science and Technology Hebei University Baoding 071002 China

2. Pillar of Engineering Product Development Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore

Abstract

AbstractAluminum batteries (ABs) are identified as one of the most promising candidates for the next generation of large‐scale energy storage elements because of their efficient three‐electron reaction. Compared to ionic electrolytes, aqueous aluminum‐ion batteries (AAIBs) are considered safer, less costly, and more environmentally friendly. However, considerable cycling performance is a key issue limiting the development of AAIBs. Stable, efficient, and electrolyte‐friendly cathodes are most desirable for AAIBs. Herein, a rod‐shaped defect‐rich α‐MnO2 is designed as a cathode, which is capable to deliver high performance with stable cycling for 180 cycles at 500 mA g−1 and maintains a discharge specific capacity of ≈100 mAh g−1. In addition, the infiltrability simulation is effectively utilized to corroborate the rapid electrochemical reaction brought about by the defective mechanism. With the formation of oxygen vacancies, the dual embedding of protons and metal ions is activated. This work provides a brand‐new design for the development and characterization of cathodes for AAIBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3