Affiliation:
1. MEET Battery Research Center University of Münster Corrensstraße 46 48149 Münster Germany
2. Helmholtz‐Institute Münster (HI MS) IEK‐12 Forschungszentrum Jülich GmbH Corrensstraße 46 48149 Münster Germany
Abstract
AbstractContinuous lithium (Li) depletion shadows the increase in energy density and safety properties promised by zero‐excess lithium metal batteries (ZELMBs). Guiding the Li deposits toward more homogeneous and denser lithium morphology results in improved electrochemical performance. Herein, a lithium nitrate (LiNO3) enriched separator that improves the morphology of the Li deposits and facilitates the formation of an inorganic‐rich solid–electrolyte interphase (SEI) resulting in an extended cycle life in Li||Li‐cells as well as an increase of the Coulombic efficiency in Cu||Li‐cells is reported. Using a LiNi0.6Co0.2Mn0.2O2 positive electrode in NCM622||Cu‐cells, a carbonate‐based electrolyte, and a LiNO3 enriched separator, an extension of the cycle life by more than 50 cycles with a moderate capacity fading compared to the unmodified separator is obtained. The relative constant level of LiNO3 in the electrolyte, maintained by the LiNO3 enriched separator throughout the cycling process stems at the origin of the improved performance. Ion chromatography measurements carried out at different cycles support the proposed mechanism of a slow and constant release of LiNO3 from the separator. The results indicate that the strategy of using a LiNO3 enriched separator instead of LiNO3 as a sacrificial electrolyte additive can improve the performance of ZELMBs further by maintaining a compact and thus stable SEI layer on Li deposits.
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献