Protein‐Loaded Cellular Nanosponges for Dual‐Biomimicry Neurotoxin Countermeasure

Author:

Wang Shuyan1,Wang Dan1,Shen Wei‐Ting1,Kai Mingxuan1,Yu Yiyan1,Peng Yifei1,Xian Nianfei1,Fang Ronnie H.1,Gao Weiwei1,Zhang Liangfang1ORCID

Affiliation:

1. Department of NanoEngineering and Chemical Engineering Program University of California San Diego La Jolla CA 92093 USA

Abstract

AbstractNeurotoxins present a substantial threat to human health and security as they disrupt and damage the nervous system. Their potent and structurally diverse nature poses challenges in developing effective countermeasures. In this study, a unique nanoparticle design that combines dual‐biomimicry mechanisms to enhance the detoxification efficacy of neurotoxins is introduced. Using saxitoxin (STX), one of the deadliest neurotoxins, and its natural binding protein saxiphilin (Sxph) as a model system, human neuronal membrane‐coated and Sxph‐loaded metal–organic framework (MOF) nanosponges (denoted “Neuron‐MOF/Sxph‐NS”) are successfully developed. The resulting Neuron‐MOF/Sxph‐NS exhibit a biomimetic design that not only emulates host neurons for function‐based detoxification through the neuronal membrane coating, but also mimics toxin‐resistant organisms by encapsulating the Sxph protein within the nanoparticle core. The comprehensive in vitro assays, including cell osmotic swelling, calcium flux, and cytotoxicity assays, demonstrate the improved detoxification efficacy of Neuron‐MOF/Sxph‐NS. Furthermore, in mouse models of STX intoxication, the application of Neuron‐MOF/Sxph‐NS shows significant survival benefits in both therapeutic and prophylactic regimens, without any apparent acute toxicity. Overall, the development of Neuron‐MOF/Sxph‐NS represents an important advancement in neurotoxin detoxification, offering promising potential for treating injuries and diseases caused by neurotoxins and addressing the current limitations in neurotoxin countermeasures.

Funder

Defense Threat Reduction Agency

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3