Affiliation:
1. IUF‐Leibniz Research Institute for Environmental Medicine 40225 Duesseldorf Germany
2. Institute for Clinical Chemistry and Laboratory Diagnostic Medical Faculty Heinrich Heine University 40225 Duesseldorf Germany
3. Institut de Ciència de Materials de Barcelona ICMAB‐CSIC, Campus UAB Bellaterra Barcelona 08193 Spain
Abstract
AbstractExposure to plastic nanoparticles has dramatically increased in the last 50 years, and there is evidence that plastic nanoparticles can be absorbed by organisms and cross the blood‐brain‐barrier (BBB). However, their toxic effects, especially on the nervous system, have not yet been extensively investigated, and most of the knowledge is based on studies using different conditions and systems, thus hard to compare. In this work, physicochemical properties of non‐modified polystyrene (PS) and amine‐functionalized PS (PS‐NH2) nanoparticles are initially characterized. Advantage of a multisystemic approach is then taken to compare plastic nanoparticles effects in vitro, through cytotoxic readouts in mammalian cell culture, and in vivo, through behavioral readouts in the nematode Caenorhabditis elegans (C. elegans), a powerful 3R‐complying model organism for toxicology studies. In vitro experiments in neuroblastoma cells indicate a specific cytotoxic effect of PS‐NH2 particles, including a decreased neuronal differentiation and an increased Amyloid β (Aβ) secretion, a sensitive readout correlating with Alzheimer's disease pathology. In parallel, only in vivo treatments with PS‐NH2 particles affect C. elegans development, decrease lifespan, and reveal higher sensitivity of animals expressing human Aβ compared to wild‐type animals. In summary, the multisystemic approach discloses a neurotoxic effect induced by aminated polystyrene nanoparticles.
Funder
Deutsche Forschungsgemeinschaft
Ministerio de Ciencia e Innovación
Generalitat de Catalunya
Jürgen Manchot Stiftung
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献