One‐Pot Etching Pyrolysis to Defect‐Rich Carbon Nanosheets to Construct Multiheteroatom‐Coordinated Iron Sites for Efficient Oxygen Reduction

Author:

Peng Shichao1,Ma Xilan1,Tian Jiachen1,Du Changliang1,Yang Lifen1,Meng Erchao2,Zhu Youqi1,Zou Meishuai1,Cao Chuanbao1ORCID

Affiliation:

1. Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Beijing Institute of Technology Beijing 100081 China

2. School of Material Science and Engineering University of Science and Technology Beijing Beijing 100083 China

Abstract

AbstractConstructing multiheteroatom coordination structure in carbonaceous substrates demonstrates an effective method to accelerate the oxygen reduction reaction (ORR) of supported single‐atom catalyst. Herein, the novel etching route assisted by potassium thiocyanate (KCNS) is developed to convert metal‐organic framework to 2D defect‐rich porous N,S‐co‐doped carbon nanosheets for anchoring atomically dispersed iron sites as the high‐performance ORR catalysts (Fe‐SACs). The well‐designed KCNS‐assisted etching route can generate spatial confinement template to direct the carbon nanosheet formation, etching condition to form defect‐rich structure, and additional sulfur atoms to coordinate iron species. Spectral and microscopy analysis reveals that the iron element in Fe‐SACs is highly isolated on carbon nanosheet and anchored by nitrogen and sulfur atoms in unsymmetrical Fe‐S1N3 structure. The optimized Fe‐SACs with large specific surface area could show remarkable alkaline ORR performances with a high half‐wave potential of 0.920 V versus RHE and excellent durability. The rechargeable zinc–air battery assembled with Fe‐SACs air electrodes delivers a large power density of 350 mW cm−2 and a stable voltage platform during charge and discharge over more than 1300 h. This work proposes a novel strategy for the preparation of single‐atom catalysts with multiheteroatom coordination structure and highly exposed active sites for efficient ORR.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3