Optimizing Iodine Enrichment through Induced‐Fit Transformations in a Flexible Ag(I)‐Organic Framework: From Accelerated Adsorption Kinetics to Record‐High Storage Density

Author:

Xiao Cao12,Tian Jindou1,Jiang Feilong1,Yuan Daqiang1,Chen Qihui1ORCID,Hong Maochun1ORCID

Affiliation:

1. State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China

2. University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractEfficient capture and storage of radioactive I2 is a prerequisite for developing nuclear power but remains a challenge. Here, two flexible Ag‐MOFs (FJI‐H39 and 40) with similar active sites but different pore sizes and flexibility are prepared; both of them can capture I2 with excellent removal efficiencies and high adsorption capacities. Due to the more flexible pores, FJI‐H39 not only possesses the record‐high I2 storage density among all the reported MOFs but also displays a very fast adsorption kinetic (124 times faster than FJI‐H40), while their desorption kinetics are comparable. Mechanistic studies show that FJI‐H39 can undergo induced‐fit transformations continuously (first contraction then expansion), making the adsorbed iodine species enrich near the Ag(I) nodes quickly and orderly, from discrete I anion to the dense packing of various iodine species, achieving the very fast adsorption kinetic and the record‐high storage density simultaneously. However, no significant structural transformations caused by the adsorbed iodine are observed in FJI‐H40. In addition, FJI‐H39 has excellent stability/recyclability/obtainability, making it a practical adsorbent for radioactive I2. This work provides a useful method for synthesizing practical radioactive I2 adsorbents.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3